The Reactions of 3, 7-Dinitrodibenzobromolium Salt with Some Amines

Zi Jie HOU, Xian Hua PAN, Ling HE
Institute of Organic Chemistry and National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract

The reactions of 3,7-dinitrodibenzobromolium salt with some amines were studied. A reaction mechanism based on the structure of the major product 6 and the minor product 7 was proposed. The reaction was considered to proceed via a substituted benzyene intermediate.

Keywords: 3, 7-Dinitrodibenzobromolium salt, amine, benzyene, reaction mechanism.

We have reported the reaction of 3, 7-dinitrodibenzobromolium salt with various nucleophiles and the formation of the major product 2 was explained to be via the nucleophilic attack of the carbon next to the bromide followed by the leaving of the Br^{+} group (Scheme 1) ${ }^{1,2}$. Later, it was found out that the major product of the reaction between 1 and some sulfoxides in the presence of equal molar of basic nucleophile was 2-sulfoniophenolate 3. Therefore, a mechanism of the formation of $\mathbf{3}$ was proposed to be through substituted benzyene $\mathbf{4}$ as an intermediate (Scheme 2) ${ }^{3}$. Since compound 5 which is the regio isomer of $\mathbf{3}$ was not isolated, we could not confirm the above mechanism.

Scheme 1

Scheme 2

[^0]In order to get enough proof for this mechanism, the following reactions were designed and performed. The reason, compound $\mathbf{1}$ did not give the intermediate $\mathbf{4}$, is that the excess amount of the amine was reacted with the intermediate 4 to give the regio isomers 6 and 7 (Scheme 3).

The reactions of $\mathbf{1}$ with a series of primary and secondary amines were studied. We found that for each reaction, $\mathbf{6}$ was the major product, $\mathbf{7}$ was a minor product. The Rf value of both compounds was very close. The spectrum data showed that compound 7 was the regio isomer of compound $\mathbf{6}$. The yields of the products were listed in Table 1. Since the differences of the chemical shifts of the aromatic protons of $\mathbf{6}$ and 7 were obvious, the structures can be easily deduced by simple analysis of the aromatic substitution effect and the relating coupling constants. The electron-withdrawn effect of the nitro group gave rise to the difference of the yield between $\mathbf{6}$ and $\mathbf{7}^{4}$. Obviously, these results strongly supported the mechanism that the reaction was proceeded through the intermidiate 4.

Scheme 3

Table 1 The yields of 6 and 7

Amine	Major product (yield*\%)	Minor product (yield* \%)
n-BuNH $_{2}$	$\mathbf{6 a}(41)$	$\mathbf{7 a}(19)$
c-HexNH	(4b	(13)
Piperidine	$\mathbf{6 b}(50)$	$\mathbf{7 c}(14)$
PhNH_{2}	$\mathbf{6 c}(43)$	$\mathbf{7 d}(26)$
BnNH_{2}	$\mathbf{6 d}(54)$	$\mathbf{7 e}(15)$
*Isolated yield	$\mathbf{6 e}(40)$	

Experimental

IR were recorded using Nicolet 170-SX spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on an Avance DRX 200 instrument $\left(\mathrm{CDCl}_{3}\right.$ was used as the solvent with TMS as an internal chemical shift reference). MS measurements were performed on HP 5890 spectrometer. Melting points were determined on Kofler hot-stage apparatus. The thermometer was uncorrected. Compound 1 was prepared according to ref. 5.

General procedure

A mixture of compound $1(0.5 \mathrm{mmol})$, amine (10 mmol) was stirred at r.t. for 6 h . The reaction mixture was poured into cold water $(30 \mathrm{~mL})$, filtered and washed with water to give a brown filter cake. The filtrate was extracted with ethyl acetate ($5 \mathrm{~mL} \times 3$). The filter cake was dissolved in the organic layer of the extraction and filtered. The filtrate was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica
gel chromatography with petroleum/ethyl acetate (5/1) as an elute to give $\mathbf{6}$ and 7 (yields of $\mathbf{6}$ and 7 were listed in Table 1), respectively. 6a: orange crystals, $\mathrm{mp} 106-107^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20-1.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 3.19(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\left.\mathrm{NHCH}_{2}-\right), 7.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 7.58\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{bc}}=\right.$ $\left.2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.63\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{bc}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 8.31\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ef}}=2.2\right.$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ef}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right) . \quad \mathrm{MS}(\mathrm{m} / \mathrm{z}): 395,393\left(\mathrm{M}^{+}, 32,33\right), 352,350$ $\left(\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}, 61,65\right), 271\left(\left[\mathrm{M}-\mathrm{Br}^{\left.-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+} \text {, (70), } 270 \text { (100). 6b: orange crystals, mp }}\right.\right.$ $150-151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $1.06-2.18\left(\mathrm{~m}, 10 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{5}-\right), 3.28-3.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}), 7.08(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 7,56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{bc}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.59(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{bc}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 8.31\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ef}}=2.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.60(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{J}_{\mathrm{ef}}=2.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 421,419\left(\mathrm{M}^{+}, 53,53\right), 378,376\left(\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}, 96,100\right)$. The melting point of $\mathbf{6 c}$ was consistent to that reported in the literature ${ }^{1}$. $\mathbf{6 d}$: orange crystals, mp 120-122 ${ }^{\circ}$ C. ${ }^{1}$ H NMR: $5.31(1 \mathrm{H}$, brs, NH $), 7.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.14-7.39(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{PhH}), 7.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 7.78\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{bc}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 8.07$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{bc}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 8.31\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ef}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ef}}=2.2\right.$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{f}}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 415,413\left(\mathrm{M}^{+}, 20,22\right), 334\left([\mathrm{M}-\mathrm{Br}]^{+} 25\right), 288\left(\left[\mathrm{M}-\mathrm{Br}-\mathrm{NO}_{2}\right]^{+}, 29\right), 241$ (55), 149 (52), 44 (100). $\nu_{\text {max }}: 3348(\mathrm{NH}), 1618,1573,1492$ (Ar), 1523,1344 (NO_{2}). 6e: orange crystals, mp 154-155 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $4.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 7.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.2 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{\mathrm{a}}\right), 7.31(\mathrm{brs}, 5 \mathrm{H}, \mathrm{Ph} \mathbf{H}), 7.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 7.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{bc}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.65$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{bc}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 8.30\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ef}}=2.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.60(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{ef}}=2.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 429,427\left(\mathrm{M}^{+}, 11,12\right), 91(100) .7 \mathrm{a}:$ orange crystals, mp $111-112^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10-1.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, 3.08 - $3.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}-\right), 6.58\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ac}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 6.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ac}}\right.$ $\left.=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 8.21\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ef}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right)$, $8.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 8.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ef}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 395,393\left(\mathrm{M}^{+}, 17\right.$, 17), $352,350\left(\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right]^{+}, 100,100\right) .7 \mathbf{b}$: orange crystals, mp $174-175^{\circ} \mathrm{C}$. ${ }^{!} \mathrm{H}$ NMR: 0.7-2.3 (m, 10H, $\left.-\left(\mathrm{CH}_{2}\right)_{5}-\right)$, 3.35-3.75 (m, 1H, CHNH-), $6.95\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ac}}=2.2 \mathrm{~Hz}\right.$, $\left.H_{c}\right), 7.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 8.22\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ef}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.24(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{J}_{\mathrm{ab}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 8.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ef}}=2.2 \mathrm{~d}, \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 421,419\left(\mathrm{M}^{+}, 15,15\right), 378$, 376 (51, 50), 55 (100). 7c: orange crystals, mp 127-128 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: 1.68 (brs, 6 H , $\left.-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{2}-\right), 3.10\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}-\right), 6.95\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ac}}=2.0 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{\mathrm{a}}\right), 7.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ac}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 7.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.6 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{\mathrm{b}}\right), 8.22\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ef}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ef}}=2,2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z})$: 407, $405\left(\mathrm{M}^{+}, 5,5\right), 390,388(100,99)$, $360,358(21,19)$. 7d: orange crystals, mp $162-164^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $6.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ac}}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ac}}=1.8 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{\mathrm{c}}\right), 7.25-7.50\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{d}}, \mathrm{Ph} \mathbf{H}\right), 8.19\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\text {ef }}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.31(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{J}_{\mathrm{ab}}=8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 8.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ef}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 9.59(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 415,413\left(\mathrm{M}^{+}\right.$, 90, 95), 241 (100), 121 (53). 7e: orange crystals, mp $158-160^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: 4.58 (d, 2H, J $\left.=5.6 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 6.68\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{bc}}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 6.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ac}}=1.8 \mathrm{~Hz}\right.$, H_{c}), $7.36\left(\right.$ brs, $\left.5 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}_{5}, \mathrm{H}_{\mathrm{d}}\right), 7.38\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 8.19\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{de}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\text {ef }}\right.$ $\left.=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ab}}=8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 8.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{ef}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 429$, 427 ($\mathrm{M}^{+}, 18,20$), 411 (19), 409 (18), 381 (19), 379 (17), 284 (14), 105 (75), 91 (PhCH^{+}, 100).

References

1. Z. J. Hou, J. H. Zhang, H. Zhang, Acta Chim. Sinica (in Chinese), 1997, 55 (4), 399.
2. Z. J. Hou, H. Zhang, J. H. Zhang, Chin. Chem.Lett., 1996, 7 (6), 505.
3. Z. J. Hou, S. F. Wang, X. H. Pan, Chinese Sci. Bull., 2000, 45 (16), 1480.
4. J. G. Robert, L. A. Vaughan, L. A. Carismith et al., J. Am. Chem. Soc., 1956, 78 (5), 611.
5. Z. J. Hou, Y. Zhu, Q. Wang, Science in China, Ser B, 1996, 39 (3), 260.

Received 25 June, 2001

[^0]: * E-mail: houzj@lzu.edu.cn

