The Reactions of 3, 7-Dinitrodibenzobromolium Salt with Some Amines

Zi Jie HOU, Xian Hua PAN, Ling HE

Institute of Organic Chemistry and National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: The reactions of 3,7-dinitrodibenzobromolium salt with some amines were studied. A reaction mechanism based on the structure of the major product $\mathbf{6}$ and the minor product $\mathbf{7}$ was proposed. The reaction was considered to proceed *via* a substituted benzyene intermediate.

Keywords: 3, 7-Dinitrodibenzobromolium salt, amine, benzyene, reaction mechanism.

We have reported the reaction of 3, 7-dinitrodibenzobromolium salt with various nucleophiles and the formation of the major product **2** was explained to be *via* the nucleophilic attack of the carbon next to the bromide followed by the leaving of the Br⁺ group (**Scheme 1**)^{1,2}. Later, it was found out that the major product of the reaction between **1** and some sulfoxides in the presence of equal molar of basic nucleophile was 2-sulfoniophenolate **3**. Therefore, a mechanism of the formation of **3** was proposed to be through substituted benzyene **4** as an intermediate (**Scheme 2**)³. Since compound **5** which is the regio isomer of **3** was not isolated, we could not confirm the above mechanism.

Scheme 1

^{*} E-mail: houzj@lzu.edu.cn

Zi Jie HOU et al.

In order to get enough proof for this mechanism, the following reactions were designed and performed. The reason, compound 1 did not give the intermediate 4, is that the excess amount of the amine was reacted with the intermediate 4 to give the regio isomers 6 and 7 (Scheme 3).

The reactions of **1** with a series of primary and secondary amines were studied. We found that for each reaction, **6** was the major product, **7** was a minor product. The Rf value of both compounds was very close. The spectrum data showed that compound **7** was the regio isomer of compound **6**. The yields of the products were listed in **Table 1**. Since the differences of the chemical shifts of the aromatic protons of **6** and **7** were obvious, the structures can be easily deduced by simple analysis of the aromatic substitution effect and the relating coupling constants. The electron-withdrawn effect of the nitro group gave rise to the difference of the yield between **6** and **7**⁴. Obviously, these results strongly supported the mechanism that the reaction was proceeded through the intermidiate **4**.

Scheme 3

Table 1 The yields of 6 and 7

Major product (yield*%)	Minor product (yield* %)
6a (41)	7a (19)
6b (50)	7b (13)
6c (43)	7c (14)
6d (54)	7d (26)
6e (40)	7e (15)
	Major product (yield*%) 6a (41) 6b (50) 6c (43) 6d (54) 6e (40)

*Isolated yield

Experimental

IR were recorded using Nicolet 170-SX spectrometer. ¹H NMR spectra were recorded on an Avance DRX 200 instrument (CDCl₃ was used as the solvent with TMS as an internal chemical shift reference). MS measurements were performed on HP 5890 spectrometer. Melting points were determined on Kofler hot-stage apparatus. The thermometer was uncorrected. Compound **1** was prepared according to ref. 5.

General procedure

A mixture of compound 1 (0.5 mmol), amine (10 mmol) was stirred at r.t. for 6 h. The reaction mixture was poured into cold water (30 mL), filtered and washed with water to give a brown filter cake. The filtrate was extracted with ethyl acetate (5 mL×3). The filter cake was dissolved in the organic layer of the extraction and filtered. The filtrate was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by silica

The Reactions of 3, 7-Dinitrodibenzobromolium Salt with Some Amines

gel chromatography with petroleum/ethyl acetate (5/1) as an elute to give 6 and 7 (yields of 6 and 7 were listed in Table 1), respectively. 6a: orange crystals, mp 106-107°C. ¹H NMR: 0.93 (t, 3H, J = 7.2 Hz, CH₃), 1.20 - 1.70 (m, 4H, CH₃CH₂CH₂-), 3.19 (t, 2H, J = 7.2 Hz, NHCH₂-), 7.12 (d, 1H, $J_{ab} = 8.3$ Hz, H_a), 7.51 (d, 1H, $J_{de} = 8.4$ Hz, H_d), 7.58 (d, 1H, $J_{bc} = 8.4$ Hz, H_d), 8.58 (d, 1H, $J_{bc} = 8.4$ Hz, H2.0 Hz, H_c), 7.63 (dd, 1H, $J_{ab} = 8.3$ Hz, $J_{bc} = 2.0$ Hz, H_b), 8.31 (dd, 1H, $J_{de} = 8.4$ Hz, $J_{ef} = 2.2$ Hz, H_e), 8.62 (d, 1H, J_{ef}=2.2 Hz, H_f). MS (*m*/*z*): 395, 393 (M⁺, 32, 33), 352, 350 $([M-C_3H_7]^+, 61, 65), 271 ([M-Br-C_3H_7]^+, (70), 270 (100)).$ **6b**: orange crystals, mp 150-151°C. ¹H NMR: 1.06-2.18 (m, 10H, –(CH₂)₅–), 3.28 - 3.60 (m, 2H, NHCH), 7.08 (d, 1H, $J_{ab} = 8.4$ Hz, H_a), 7.51 (d, 1H, $J_{de} = 8.4$ Hz, H_d), 7,56 (d, 1H, $J_{bc} = 2.0$ Hz, H_c), 7.59 (dd, 2H) 1H, $J_{ab} = 8.4$ Hz, $J_{bc} = 2.0$ Hz, H_d), 8.31 (dd, 1H, $J_{de} = 8.4$ Hz, $J_{ef} = 2.4$ Hz, H_e), 8.60 (d, 1H, J $J_{ef} = 2.4 \text{ Hz}, H_f$). MS (m/z): 421,419 (M⁺, 53,53), 378, 376 ([M-C₃H₇]⁺, 96, 100). The melting point of **6c** was consistent to that reported in the literature¹. **6d**: orange crystals, mp 120-122°C. ¹H NMR: 5.31 (1H, brs, NH), 7.10 (d, 1H, $J_{ab} = 8.4$ Hz, H_a), 7.14 - 7.39 (m, 5H, Ph**H**), 7.57 (d, 1H, $J_{de} = 8.4 \text{ Hz}$, H_d), 7.78 (dd, 1H, $J_{ab} = 8.4 \text{ Hz}$, $J_{bc} = 2.2 \text{ Hz}$, H_b), 8.07 (d, 1H, $J_{bc} = 2.2$ Hz, H_c), 8.31 (dd, 1H, $J_{de} = 8.4$ Hz, $J_{ef} = 2.2$ Hz, H_e), 8.61 (d, 1H, $J_{ef} = 2.2$ Hz, H_f). MS (*m*/*z*): 415, 413 (M⁺, 20, 22), 334 ([M-Br]⁺ 25), 288 ([M-Br-NO₂]⁺, 29), 241 (55), 149 (52), 44 (100). v_{max} : 3348 (NH), 1618, 1573, 1492 (Ar), 1523, 1344 (NO₂). **6e**: orange crystals, mp 154-155°C. ¹H NMR: 4.40 (s, 2H, PhCH₂), 7.13 (d, 1H, $J_{ab} = 8.2$ Hz, H_a), 7.31(brs, 5H, PhH), 7.51 (d, 1H, $J_{de} = 8.5$ Hz, H_d), 7.56(d, 1H, $J_{bc} = 2.0$ Hz, H_c), 7.65 $(dd, 1H, J_{ab} = 8.2 Hz, J_{bc} = 2.0 Hz, H_b), 8.30 (dd, 1H, J_{de} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 1H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 1H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 1H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 1H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 1H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 1H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 1H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 1H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{ef} = 2.1 Hz, H_e), 8.60 (d, 2H, J_{be} = 8.5 Hz, J_{be}$ 1H, $J_{ef} = 2.1$ Hz, H_f). MS (*m*/*z*): 429, 427 (M⁺, 11, 12), 91 (100). **7a**: orange crystals, mp 111-112°C. ¹H NMR: 1.00 (t, 3H, J = 7.0 Hz, CH₃), 1.10-1.90 (m, 4H, CH₃CH₂CH₂-), 3.08 - 3.46 (m, 2H, CH₂NH–), 6.58 (dd, 1H, J_{ab} = 8.4 Hz, J_{ac} = 2.2 Hz, H_a), 6.80(d, 1H, J_{ac} = 2.2 Hz, H_c), 7.50(d, 1H, J_{de} = 8.4 Hz, H_d), 8.21(dd, 1H, J_{de} = 8.4 Hz, J_{ef} = 2.2 Hz, H_e), 8.23 (d, 1H, $J_{ab} = 8.4$ Hz, H_b), 8.53 (d, 1H, $J_{ef} = 2.2$ Hz, H_f). MS (*m*/*z*): 395,393 (M⁺, 17, 17), 352, 350 ([M-CH₃CH₂CH₂]⁺, 100, 100). **7b**: orange crystals, mp 174-175°C. ¹H NMR: 0.7-2.3 (m, 10H, $-(CH_2)_{5-}$), 3.35 - 3.75 (m, 1H, CHNH-), 6.95 (d, 1H, $J_{ac} = 2.2$ Hz, H_c), 7.51 (d, 1H, $J_{de} = 8.4$ Hz, H_d), 8.22 (dd, 1H, $J_{de} = 8.4$ Hz, $J_{ef} = 2.2$ Hz, H_e), 8.24 (d, 1H, $J_{de} = 8.4$ Hz, $J_{ef} = 2.2$ Hz, H_e), 8.24 (d, 1H, $J_{ef} = 2.2$ Hz, H_e) $J_{ab} = 8.4 \text{ Hz}, H_b$, 8.55 (d, 1H, $J_{ef} = 2.2 \text{ d}, \text{Hz}, H_f$). MS (*m*/*z*): 421, 419 (M⁺, 15, 15), 378, 376 (51, 50), 55 (100). 7c: orange crystals, mp 127-128°C. ¹H NMR: 1.68 (brs, 6H, $-CH_2-(CH_2)_3-CH_2-$, 3.10 (m, 4H, $-CH_2-N-CH_2-$), 6.95 (dd, 1H, $J_{ab} = 8.6$ Hz, $J_{ac} = 2.0$ Hz, H_a), 7.10 (d, 1H, $J_{ac} = 2.0 \text{ Hz}$, H_c), 7.49 (d, 1H, $J_{de} = 8.4 \text{ Hz}$, H_d), 7.80 (d, 1H, $J_{ab} = 8.6 \text{ Hz}$, H_b), 8.22 (dd, 1H, $J_{de} = 8.4$ Hz, $J_{ef} = 2.2$ Hz, H_e), 8.55 (d, 1H, $J_{ef} = 2.2$ Hz, H_f). MS (m/z): 407, 405 (M⁺, 5, 5), 390, 388 (100, 99), 360, 358 (21, 19). 7d: orange crystals, mp $162-164^{\circ}$ C. ¹H NMR: 6.77 (dd, 1H, $J_{ab} = 8.8$ Hz, $J_{ac} = 1.8$ Hz, H_a), 7.19 (d, 1H, $J_{ac} = 1.8$ Hz, H_c), 7.25 - 7.50 (m, 6H, H_d , Ph**H**), 8.19 (dd, 1H, $J_{de} = 8.4$ Hz, $J_{ef} = 2.2$ Hz, H_e), 8.31 (d, 1H, $J_{ef} = 2.2$ Hz, H_e), 8.31 (d, 1H, $J_{ef} = 2.2$ Hz, H_e), 8.31 (d, 1H, $J_{ef} = 2.2$ Hz, $H_{ef} = 2.2$ Hz, H_{ef $J_{ab} = 8.8 \text{ Hz}, H_b$, 8.52 (d, 1H, $J_{ef} = 2.2 \text{ Hz}, H_f$), 9.59(brs, 1H, NH). MS (*m*/*z*): 415,413 (M⁺, 90, 95), 241 (100), 121 (53). 7e: orange crystals, mp 158-160 °C. ¹H NMR: 4.58 (d, 2H, J = 5.6 Hz, PhCH₂), 6.68 (dd, 1H, $J_{ab} = 8.8$ Hz, $J_{bc} = 1.8$ Hz, H_a), 6.82 (d, 1H, $J_{ac} = 1.8$ Hz, H_c), 7.36 (brs, 5H, C_6H_5 , H_d), 7.38 (d, 1H, $J_{de} = 8.4 \text{ Hz}$, H_d), 8.19 (dd, 1H, $J_{de} = 8.4 \text{ Hz}$, J_{ef} $= 2.2 \text{ Hz}, \text{ H}_{e}, 8.29 \text{ (d, 1H, } J_{ab} = 8.8 \text{ Hz}, \text{ H}_{b}, 8.51 \text{ (d, 1H, } J_{ef} = 2.2 \text{ Hz}, \text{ H}_{f}).$ MS (m/z): 429, 427 (M⁺, 18, 20), 411 (19), 409 (18), 381 (19), 379 (17), 284 (14), 105 (75), 91 (PhCH₂⁺, 100).

Zi Jie HOU et al.

References

- Z. J. Hou, J. H. Zhang, H. Zhang, Acta Chim. Sinica (in Chinese), 1997, 55 (4), 399.
 Z. J. Hou, H. Zhang, J. H. Zhang, Chin. Chem.Lett., 1996, 7 (6), 505.
 Z. J. Hou, S. F. Wang, X. H. Pan, Chinese Sci. Bull., 2000, 45 (16), 1480. 1.
- 2.
- 3.
- J. G. Robert, L. A. Vaughan, L. A. Carismith *et al., J. Am. Chem. Soc.*, **1956**, 78 (5), 611.
 Z. J. Hou, Y. Zhu, Q. Wang, *Science in China, Ser B*, **1996**, *39* (3), 260.

Received 25 June, 2001